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» Chronic neurological disorder

= Imposes serious health risks and restrictions on
daily life

» EEG (electroencephalography) or IEEG
(intracranial EEG) recordings

= Complex and highly variable

» Challenges for continuous monitoring and detection
= High sensitivity but with almost no false positives

= Low complexity and memory requirements to be
implementable on wearable devices

= Low power requirements to allow extensive battery
lifetime
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Q&#efemnuuuum pieEdiimensional computing

* Promising new machine learning (ML) approach inspired by neuroscience
= High-dimensional randomized representations of data rather than scalar numerical values

» Based on representing data as vectors with very high dimensionality
= Usually > 10000 values, binary
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. : Building vector representation of data class
» Enables various properties and
operations on such vectors

= Any two random vector are orthogonal

= Two summed vectors are more similar
to their sum then any other random
vector

= Binding information (by summing) Samplen .
= Bundling information (by XOR)

Sample 1
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AIM OF THIS WORK

» Compare different approaches for feature encoding to HD on epilepsy detection task
» Evaluate performance, as well as computational and memory complexity
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cwfsmﬂuumm DEfaiencoding approaches

= Two already applied on epilepsy  Data encoding from one discrete data window

= Local binary patterns (LBP) =
= Raw amplitude of each sample O o hZ__ |,
RawAmpl Ch 1 : T ValHDMem :
( p ) —i IH:WM—P@\ ' 7 ? "FreqHDMem-’:‘ _-y%_’
= Several new ones : e =00 i L O0——
= FFT of moving windows (FFT) ;’G_M_’@/ ’x
.. W il FreqHDMem=s=
= |ndividual feature value of each LBP/RawAmpl FFT
window (SimpleFeat) =
= Amplitude, Entropy, CWT P - [
ik ValHDMem —>
= Combining multiple features Lw®\ ®\ ; 0>
Ampl&Entropy& CWT —»@—W—»®/ ValHDVem ®/
. Chn m I -
4oFeat SimpleFeat MultiFeat
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e Experimental setup

» The CHB-MIT database » Labels postprocessing
= Scalp EEG dataset, 24 subjects = Step1: moving average
= 183 seizures, with an average of = Step2: merging seizures
7.6 £ 5.8 seizures per subject
» Performance
* SWEC-ETHZ _ = Level of episodes and level of duration
" |EEG, 16 patients = Sensitivity, precision, F1 score
= 100 seizures, with an average of ; i
6.3 + 3.8 seizures per subject = Computational complexity
= Datasets preprocessing = Number of SUM and XOR operations

_ _ _ L .
= Personalized approach, using leave one Relative time for calculation

seizure out = Memory complexity
= Balanced subsets of original dataset = Memory needed to store all HD vectors

Episode level 0 1 0 1 0 0
Duration level 000000001010101111100000010100011111111111101011011000000000000011000000001000
[ 1 | | [ 1
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* Improves performance at the
episode level

= First step: up to 41.2% for EEG
and 41.5% for IEEG

= Second step: up to 65.5% for EEG
and 70.9% for IEEG

= Minor improvement on the seizure
duration level

= Up to 4.0% for EEG and 6.4% for
IEEG after both steps
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= Differences between approaches much
bigger before label postprocessing

= For episode level

* The best performance by approaches
including amplitude information

= 45Feat better then 3Feat
= LBP, CWT quite bad

= For duration level
= | ess variable between approaches
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Results: Performance
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A ST mplitationalimemory complexity

» | BP, FFT and 45Feat approaches have
biggest memory requirements

* The ratio between the best and worst-
case memory requirements is 3.8x

* Immense difference between approaches
= Ampl, Entropy, and FFT are very computationally
efficient
= Sources of complexity
= HD vectors operations: RawAmpl and LBP
= Feature calculation: CWT, 3Feat and 45Feat

» The ratio between the best and worst-case
= |n terms of number of operations is 1056x
= |n terms of computation time is 622X
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ch's'ﬁ'#s“dﬂllﬂﬂﬂlﬂ Conclusions

Different feature encoding strategies on HD vectors were compares
= For detection of epileptic seizures

Significant difference in performance especially on the episode level
= Postprocessing reduces differences

Computational complexity differences between approaches are much bigger than
concerning memory than for computational complexity

= Approaches with higher performance (such as RawAmpl or 45Feat) might not ideal for
wearable applications due to high memory or computational requirements

For a wearable implementation, feature selection and decisions based on several
aspects are necessary

= Results confirmed on two datasest: EEG and IEEG
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