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 Chronic neurological disorder
 Imposes serious health risks and restrictions on 

daily life

 EEG (electroencephalography) or IEEG 
(intracranial EEG) recordings
 Complex and highly variable 

 Challenges for continuous monitoring and detection 
 High sensitivity but with almost no false positives 
 Low complexity and memory requirements to be 

implementable on wearable devices 
 Low power requirements to allow extensive battery 

lifetime 
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 Promising new machine learning (ML) approach inspired by neuroscience
 High-dimensional randomized representations of data rather than scalar numerical values

 Based on representing data as vectors with very high dimensionality
 Usually > 10000 values, binary 
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 Enables various properties and 
operations on such vectors
 Any two random vector are orthogonal
 Two summed vectors are more similar 

to their sum then any other random 
vector

 Binding information (by summing) 
 Bundling information (by XOR) 

Building vector representation of data class
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 Compare different approaches for feature encoding to HD on epilepsy detection task
 Evaluate performance, as well as computational and memory complexity  

AIM OF THIS WORK
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 Two already applied on epilepsy
 Local binary patterns (LBP) 
 Raw amplitude of each sample 

(RawAmpl)
 Several new ones 

 FFT of moving windows (FFT)
 Individual feature value of each 

window (SimpleFeat)
 Amplitude, Entropy, CWT 

 Combining multiple features
 3Feat: 

Ampl&Entropy&CWT
 45Feat
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Data encoding from one discrete data window



 The CHB-MIT database 
 Scalp EEG dataset, 24 subjects
 183 seizures, with an average of 

7.6 ± 5.8 seizures per subject

 SWEC-ETHZ
 IEEG, 16 patients 
 100 seizures, with an average of 

6.3 ± 3.8 seizures per subject

 Datasets preprocessing 
 Personalized approach, using leave one 

seizure out 
 Balanced subsets of original dataset
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 Labels postprocessing 
 Step1: moving average
 Step2: merging seizures

 Performance
 Level of episodes and level of duration 
 Sensitivity, precision, F1 score 

 Computational complexity 
 Number of SUM and XOR operations
 Relative time for calculation 

 Memory complexity
 Memory needed to store all HD vectors

DATASETS EVALUATION
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 Improves performance at the 
episode level 
 First step: up to 41.2% for EEG 

and 41.5% for IEEG
 Second step: up to 65.5% for EEG 

and 70.9% for IEEG

 Minor improvement on the seizure 
duration level 
 Up to 4.0% for EEG and 6.4% for

IEEG after both steps
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 Differences between approaches much 
bigger before label postprocessing 

 For episode level 
 The best performance by approaches 

including amplitude information 
 45Feat better then 3Feat 
 LBP, CWT quite bad 

 For duration level 
 Less variable between approaches 
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 Immense difference between approaches
 Ampl, Entropy, and FFT are very computationally 

efficient

 Sources of complexity
 HD vectors operations: RawAmpl and LBP
 Feature calculation: CWT, 3Feat and 45Feat 

 The ratio between the best and worst-case
 In terms of number of operations is 1056x 
 In terms of computation time is 622X
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 LBP, FFT and 45Feat approaches have 
biggest memory requirements

 The ratio between the best and worst-
case memory requirements is 3.8x

Computational complexity

Memory requirements



 Different feature encoding strategies on HD vectors were compares
 For detection of epileptic seizures 

 Significant difference in performance especially on the episode level
 Postprocessing reduces differences 

 Computational complexity differences between approaches are much bigger than
concerning memory than for computational complexity 
 Approaches with higher performance (such as RawAmpl or 45Feat) might not ideal for 

wearable applications due to high memory or computational requirements

 For a wearable implementation, feature selection and decisions based on several 
aspects are necessary
 Results confirmed on two datasest: EEG and IEEG
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project

Speaker Email: una.pale@epfl.ch

Questions? This project was funded in part by: 

mailto:una.pale@epfl.ch

	Systematic Assessment of Hyperdimensional Computing�for Epileptic Seizure Detection
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

