

A Ring Oscillator-based Analog-to-Digital Converter for X-HEEP

Leidy Mabel Alvero González

José Miranda Calero, Embedded System Laboratory, EPFL

Eric Gutiérrez and Susana Patón, Electronics Technology Department, UC3M

uc3m | Universidad Carlos III de Madrid

May 9th, 2023, EPFL

1. Time-encoding technique: VCO-based ADC basis

- 2. Targeting physio-bandwidth
- 3. Designing RO-based ADC for X-HEEP. **PROPOSAL**
- 4. Current Simulations

Technology evolution

uc3m

*L. L. Lewyn, T. Ytterdal, C. Wulff and K. Martin, "Analog Circuit Design in Nanoscale CMOS Technologies," in Proceedings 3 of the IEEE, vol. 97, no. 10, pp. 1687-1714, Oct. 2009.

RO-based ADC basis

uc3m

RO-based ADC basis

Open-loop VCO-based ADC

* W. Sansen, "1.3 Analog CMOS from 5 micrometer to 5 nanometer," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1-6.

Proposal: Several RO-based ADC paths

passive interpolation

 $6.02 \cdot log_2 \frac{1}{N_{taps}}$

phase injection

SNR enhances by 6dB

*1 Eric Gutierrez, Leidy Mabel Alvero-Gonzalez and Ruben Garvi, N Parallel Paths for Non-Linearity Mitigation in Ring Oscillator based Analog-to-Digital Conversion, accepted for publication on AEU – International Journal of Electronics and Communications

*2 E. Gutierrez, L. Hernandez, F. Cardes and P. Rombouts, "A Pulse Frequency Modulation Interpretation of VCOs Enabling VCO-ADC Architectures With Extended Noise Shaping," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 444-457, Feb. 2018.

Proposal: Several RO-based ADC paths

UC3m * Eric Gutierrez, Leidy Mabel Alvero-Gonzalez and Ruben Garvi, N Parallel Paths for Non-Linearity Mitigation in Ring Oscillator based Analog-to-Digital Conversion, accepted for publication on AEU – International Journal of Electronics and Communications. ⁷

Practical application: X-HEEP

eXtendable Heterogeneous Energy Efficient Platform

Performance, Power and Energy Proportional Platform for Ultra-Low-Power Edge-Computing Applications

ENBEDDED ABORATORY

Specifications

Biosignal: Electrothermal activity (EDA) or Galvanic Skin Response (GSR)

- Bandwidth (BW) = 1.5Hz
 - DR: 14 ENOBs 84dB
 - Input signal: voltage
- Average sensitivity 0.01µS

Front-end circuit analysis

The sensitivity defines LSB of the ADC architecture.

uc3m

* J. A. Miranda Calero, A. Páez-Montoro, C. López-Ongil and S. Paton, "Self-Adjustable Galvanic Skin Response Sensor for Physiological Monitoring," in *IEEE Sensors Journal*, vol. 23, no. 3, pp. 3005-3019, 1 Feb.1, 2023.

Designing an open-loop RO-based ADC

UC3m * Y. -G. Yoon, J. Kim, T. -K. Jang and S. Cho, "A Time-Based Bandpass ADC Using Time-Interleaved Voltage-Controlled Oscillators," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3571-3581, Dec. 2008.

uc3m

Current simulations

Checked by Simulink/MATLAB model

Designing a RO: transistor level

Quantization noise = 100dB

RO gain for 10 μV_{pp} 12 MHz/V for 20 phases from a single RO

Current simulations

Designing a RO: transistor level

Test	Output	Nominal
work_mabel:tb_RO_11difftaps:1	/clk	<u>~</u>
work_mabel:tb_RO_11difftaps:1	/count	
work_mabel:tb_RO_11difftaps:1	xpeak	12.5m
work_mabel:tb_RO_11difftaps:1	Va	0
work_mabel:tb_RO_11difftaps:1	fo	60.17K
work_mabel:tb_RO_11difftaps:1	kvco	596.7K
work_mabel:tb_RO_11difftaps:1	kd	9.918
work_mabel:tb_RO_11difftaps:1	kdgraph	<u>k</u>
work_mabel:tb_RO_11difftaps:1	PNdB	<u>k</u>
work_mabel:tb_RO_11difftaps:1	PN	<u>k</u>
work_mabel:tb_RO_11difftaps:1	freq	<u>k</u>
work_mabel:tb_RO_11difftaps:1	Sjitter	
work_mabel:tb_RO_11difftaps:1	PN_noi_pow	2.519p
work_mabel:tb_RO_11difftaps:1	PN_noi_pow_dB	-116
work_mabel:tb_RO_11difftaps:1	PN_sig_pow	78.13u
work_mabel:tb_RO_11difftaps:1	PN_sig_pow_dB	-41.07
work_mabel:tb_RO_11difftaps:1	SNR	74.92

Phase noise = 74 dB

Thermal noiseRO current

Flicker noise

- size of transistor
- Number of taps
- Matching edges

Phase noise domains over quantization noise

Designing a RO: transistor level

Nonlinearity performance

Transient simulations for f_{in} = 333 Hz and f_s = 10 kHz

Blue: Vin = 100 mV_{pp} Orange: Vin = 25 mVpp

More channels to reduce the distortion further Pseudo-differential ADC structure to remove the even harmonics terms.

Open-loop RO-based ADC for GSR

uc3m

Thanks!

Voltage-Controlled Oscillator-based Analog-to-Digital Conversion for X-HEEP by Leidy Mabel Alvero González

uc3m Universidad Carlos III de Madrid