
7 December 2021 3D-ICE 3.1.0

This document provides a brief summary of the usage of 3D-ICE. This
includes illustrative examples of generating the input stack and
floorplan files, and the various functions used for printing the results. User Guide

Table of Contents
1. License and Copyright..3

2. What is new in 3.x?..4

3. What is new in 2.x?..4

4. Who needs 3D-ICE?...6

5. Before you begin..7

A. Compile SuperLU...7

B. Compile 3D-ICE..7

C. Pluggable heat sink and co-simulation interface...8

D. Testing installation..8

6. Overview of 3D-ICE..9

A. Principle of thermal simulation...9

i. Microchannel 4-resistor model...9

ii. Microchannel 2-resistor model..10

iii. Pinfins in-line...10

iv. Pinfins staggered...11

B. Inputs to 3D-ICE...11

C. Convention and Terminology...12

7. Creating a 3D-ICE project...14

A. Stack Description File...14

i. Materials...14

ii. Layers...15

iii. Dies...15

iv. Heat Sink...16

v. Liquid-cooled cavity...18

vi. Dimensions..22

vii. Stack...24

viii. Analysis options...26

ix. Output Instructions...27

1

Examples..30

B. Floorplan File...32

Time Slots..35

8. Co-simulation and plugin interface..37

9. Network interface for remote simulations..42

10. Running 3D-ICE..43

11. Usage of the 3D-ICE as Software Thermal Library..44

A. StackDescription_t, Analysis_t and Output_t..45

B. ThermalData_t...46

C. Emulation and thermal output..46

D. Socket..47

E. NetworkMessage...48

F. Debugging of ThermalSimulation...49

G. Binding to SystemC/TLM2.0 Applications..50

12. References...51

2

1.License and Copyright
This file is part of 3D-ICE.

3D-ICE is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or any later
version.3D-ICE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received a copy of the GNU General Public
License along with 3D-ICE. If not, see .

Any usage of 3D-ICE for research, commercial or other purposes must be properly acknowledged in
the resulting products or publications. Specifically, [1], [2] and [10] must be cited in these cases.

Copyright©2021,

Embedded Systems Laboratory -École Polytechnique Fédérale de Lausanne,

All Rights Reserved.

Authors:
Arvind Sridhar1

Alessandro Vincenzi1

Giseong Bak1

Martino Ruggiero1

Thomas Brunschwiler2

Matthias Jung3

Éder Zulian3

Federico Terraneo4

Darong Huang1

Luis Costero1

Marina Zapater1

David Atienza1

1 Embedded Systems Laboratory, Department of Electrical Engineering, EPFL, Lausanne,
Switzerland.

2 Advanced Thermal Packaging Group, IBM Research Laboratory, Zurich, Switzerland.

3 Microelectronic Systems Design Research Group, University of Kaiserslautern, Kaiserslautern,
Germany.

4 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.

3

Contact Information:
EPFL-STI-IEL-ESL
Bâtiment ELG, ELG 130
Station 11
1015 Lausanne, Switzerland

Email:

URL:

3d-ice@listes.epfl.ch
(SUBSCRIPTION NECESSARY!)
http://esl.epfl.ch/3d-ice

This research has been partially funded by the EC H2020 RECIPE project (GA No. 801137), and the ERC Consolidator Grant
COMPUSAPIEN (GA No. 725657), and by the EC EUROLAB-4-HPC CSA Grant (GA No. 800962) through a Short Term
Collaboration Project for Dr. Federico Terraneo with EPFL.
This research has been partially funded by the Nano-Tera RTD project CMOSAIC (ref.123618) - which is financed by the Swiss
Confederation and scientifically evaluated by SNSF, and the PRO3D project- financed by the European Community 7th
Framework Programme (ref.FP7-ICT-248776).

2.What is new in 3.x?
3D-ICE 3.x features several new additions:

 Supported non-uniform discretization for floorplan elements. Floorplan elements can have
different cell sizes in thermal modeling and simulation.

 Non-uniform discretization for layers is also supported.
 Supported non-uniform discretization in both steady and transient simulation, and it is

compatible with all other functions in the uniform mode.
 Added models of two COTS heat sinks, the HS483 air sink and the cuplex kryos 21606 water

block.
 Added Modelica libraries for heat sink modeling to produce FMIs for co-simulation.
 Added grid pitch mapping to FMI interface to allow simulation of heat sinks using a coarser grid.
 Made wrappers for FMI, C++ and Python for the co-simulation interface for pluggable heat sinks.
 Added a pluggable heat sink C interface that makes it possible to extend 3D-ICE with third party

heat sink models.
 Added co-simulation support with a separate thermal model for the heat sink.
 Made it possible for the last layer of the 3D-ICE stack to have a different size than the other

layers, to support heat spreader modeling and passive air convection packages.

3.What is new in 2.x?
3D-ICE 2.x features several new additions and improvements over the first release of the simulator in
September 2010. You would find the following main changes in this package (changes specific to version
2.2 are highlighted in bold):

 A new porous medium model has been implemented for the simulation of convective heat
transport in interlayer microchannel cavities.

 Various new and enhanced heat transfer geometries have been introduced for the interlayer
cavities.

4

 The user interface has been improved considerably. All the input-output information to the
simulator has been transferred to the stack descriptor file, requiring little or no programming of
the main C file by the user. This feature brings it closer to SPICE-like circuit simulators that use
netlists for circuit descriptions. Hence, 3D-ICE can now function as both a stand-alone thermal
simulator as well as a software thermal library. This functionality allows generating thermal and
power maps of the IC for each die of the 3D stack.

 The user now has the option of doing steady state thermal analysis in addition to transient
analysis. This is useful for obtaining steady state temperatures for some average/corner case
heat dissipation scenarios, without having to wait for the transients to settle; as well as for
generating initial temperature states for certain types of transient simulations.

 A new network interface has been created for online thermal simulations of IC architectures, in
tandem with functional emulation on other devices. Under this system, 3D-ICE installed on a
computer acts as the server, which communicates with a device emulating the desired
architecture via an Ethernet cable. This feature is particularly useful for those who wish to build
and test online-thermal-performance-management schemes with Hardware-Software co-
simulation of ICs with liquid cooling without actually building the device [6].

 Extensive new documentation has been provided with this release to help simplify the usage of
the simulator– this includes this extended user guide, research publications and a new Doxygen
source code documentation. Doxygen has been used to create an organized html-based
visualization of the 3D-ICE software library files and can be accessed by running in the make doc
command inside the 3D-ICE folder, and then opening 3d-ice/doc/html/index.html on your
web browser.

 Floorplan elements can now be of irregular shapes, as long as they can be represented as a
combination of rectangles (defined as an IC element). This feature has been introduced to
support the more complex floorplanning that is seen in realistic architectures. A new technique
to align the IC elements on the undelaying thermal cells has been implemented. It allows
declaring IC elements smaller than thermal cells as well as posing more than one IC element
on the same thermal cell (see section 6.B).

 The heat sink model has been extended to support two different techniques to model the
dissipation of the heat through the top surface of the IC (see section 6.A.IV).

To discover the changes in the library that are related to the implementation and the interface of
the software library please see the CHANGELOG file in the package.

5

4.Who needs 3D-ICE?
3D-ICE, or “3D Interlayer Cooling Emulator”, is a Linux based generic simulation platform written in C to
simulate the transient thermal behavior of 3D IC structures with inter-tier microchannel heat sinks. It is
intended for various purposes including, but not limited to:

 Performing thermal analysis of 2D or 3D ICs during early stages of VLSI circuit/architecture
design by electronic engineers.

 Simulating run-time and design-time thermal management strategies such as DVFS, dynamic
work allocation, variable coolant flow rate, architectural floorplanning etc.

 Testing of microchannel heat-sink performances by microfabrication engineers and heat-sink
designers.

 Evaluating accuracies of new and existing heat transfer correlations by experimental heat
transfer engineers.

3D-ICE is based on the conventional compact modeling of heat transfer by conduction in solids, and
advances a novel compact modeling methodology, called the Compact Transient Thermal Modeling
(CTTM), for heat transfer by convection in microchannels. The user is free to use microchannel heat
sinks of any dimension with the corresponding heat transfer performance data depending upon the
accuracy/speed needs of the user. This simulator is ideal for situations where a quick estimate of chip
temperatures is required, when the electronic designer is still iterating between various floorplanning
and operating strategies in order to optimize for electronic performance and thermal safety/reliability of
the final system.

In addition, the format of inputs, outputs and the problem construction/solving in 3D-ICE have been
modeled on the popular compact modeling simulator HotSpot, making it easier for users who are
familiar with this tool or with conventional circuit simulators. With numerous functions to access a
variety of thermal data during the simulation, the user can reach deep into the heart of the thermal
simulation, use the data to interface with other (popular or custom) tools and automate any kind of
design/run-time optimization algorithms using 3D-ICE. More functionality will be added in the future
versions of 3D-ICE to make this interfacing even more automatic and easy.

For more details on the theory and discussions about the accuracy/speed of the modeling technique
used in 3D-ICE, please refer to the publications [1] and [2] available with this library.

6

5.Before you begin
The 3D-ICE library has been written and developed using:

 gcc 7.4.0
 bison 3.0.4
 flex 2.6.4
 blas 3.7.1

Make sure that these tools are installed on your system before compiling and that the corresponding
variables in makefile.def point to the respective binary file. Newer versions should be supported as well,
unless backward compatibility issues have been introduced in those packages.

Additionally, the C shell is required to build the SuperLU library.

On debian-based (e.g: Ubuntu) you can install them by typing:

$ sudo apt install build-essential bison flex libblas-dev csh

You can then extract the 3D-ICE sources with:

$ unzip 3d-ice-<version>.zip

$ cd 3D-ICE

A. Compile SuperLU
To use 3D-ICE, you must also download and compile the SuperLU 4.3 library [4].

A convenience script is provided, you can run it by executing the following command:

$./install-superlu.sh

B. Compile 3D-ICE
Check and edit the SLU_VERSION and SLU_MAIN variables in ./makefile.def to make it point to the
main folder of SuperLU. Next, select the value of SLU_LIBS according to the choice done above when
compiling SuperLU (if you used the convenience script above, this should be already set up for you).

You can then compile the 3D-ICE sources with:

$ make

Now you can find the executable 3D-ICE-Emulator in the 3d-ice/bin/ folder:this binary file will serve
as the thermal simulator application for all your 3D-ICE projects. The bin folder will also contain two
other binaries 3D-ICE-Server and 3D-ICE-Client: these two executable will serve as example of an
implementation of the network interface to execute a remote client/server thermal simulation.

7

C. Pluggable heat sink and co-simulation interface
To use the pluggable heat sink feature, you also need the following depedencies:

 OpenModelica 1.16.0 or greater (install guide at https://www.openmodelica.org)
o Do not install any version earlier than 1.16.0

 Pugixml 1.8.1 or greater (sudo apt install libpugixml-dev)
 Python 3 header files (sudo apt install python3-dev)
 Pkg-config (sudo apt install pkg-config)

You can then compile the 3D-ICE Plugin sources with:

$ make plugin

D. Testing installation
You can then test the 3D-ICE installation with:

$ make test

8

https://www.openmodelica.org/

6.Overview of 3D-ICE
This chapter provides a general overview of 3D-ICE: its operating principle, the input files required and
the conventions and terminology used in writing these input files. In the next chapter, these input files
are discussed in detail.

A. Principle of thermal simulation
3D-ICE is based on the compact modeling of heat flow in solids and liquids applied to a 3D-IC structure
with microchannel cooling. As quick recap, the structure is divided into cuboidal thermal cells based on
the discretization parameters you provide. Next, thermal conductance for heat flow through each face
of the cuboid is calculated and connected to the neighboring cells at these faces. Also, a capacitance
representing the heat capacity of the cell is calculated. Hence, an equivalent electrical RC circuit is
created where the temperatures are represented by voltages and the heat flow is represented by the
currents in the circuit. A typical thermal cell representing transient conduction in solids is shown below:

Figure 1: A typical solid thermal cell

In the case of thermal cells representing microchannels or fluidic cavities, while the heat transferred
from the cavity walls into the fluid is represented using conventional thermal resistances (or
conductances), the convective heat transport in the downstream direction due to mass flow is
represented using voltage controlled current sources. There are four different interlayer cooling cavity
models implemented in 3D-ICE.

i. Microchannel 4-resistor model
This is the model, which was available in 3D-ICE 1.0, is based on the 4RM-CTTM model described in [1].
Here, the thermal cells are constructed such that in the cavity layer, 2 faces of the thermal cells
corresponding to the microchannel completely cover the entire cross-section of the microchannel as
shown in Fig. 2. Hence, the discretization along the direction perpendicular to the channels is fixed by
the channel geometry. There are four resistances one for each wall of the microchannel representing
convective cooling of the wall surfaces. They can be coupled with solid thermal cells on all four
directions as shown in Fig. 2. The convective resistance in the top, bottom and the sides can be
provided independently into the simulator.

9

Figure 2: A mc4rm fluid thermal cell adjacent to two solid thermal cells

ii. Microchannel 2-resistor model
This new model for microchannel cavities is based on the 2RM-CTTM model presented in [2]. Here, the
dependence of discretization on the channel geometry is completely removed, by homogenizing the
entire cavity layer into a single “porous” material. Hence, each cell consists of circuit parameters
corresponding to both the flowing coolant as well as the solid walls as shown in Fig. 3. The thermal cell
here is two-dimensional because of the elimination of convective resistances on the sides. This model
lets the user completely control the granularity of the model by making the thermal cell dimensions (in
the x-direction) completely independent of the channel dimensions. Also, when using this model, the
top and bottom heat transfer coefficients to be provided in the input files of 3D-ICE must be a
projected average of the heat transfer coefficients between the side walls, and the top and bottom
walls respectively. For more information about constructing this model, refer to [2].

Figure 3: A mc2rm thermal cell

iii. Pinfins in-line
Enhanced heat transfer geometries, such as pin
fins can be used in interlayer cooling to improve
the heat transfer properties of the liquid-
cooled heat sink, when compared to conventional microchannels. Pin fins are also attractive because
the can serve as ideal paths for the fabrication of TSVs in 3D ICs. These advantages come at the cost of
increased pressure drops. Inline pin fins are one of the two standard types of pin fin HTGs. The top
view of such an HTG is shown in Fig. 4.

Figure 4: Pin fins inline heat transfer geometry

10

iv. Pinfins staggered
Staggered pin fins (Fig. 5) is another standard type of pin fin heat transfer geometry. For both these pin
fin geometries the 2RM-CTTM modeling method is utilized. The corresponding “porous” thermal cell is
illustrated in Fig. 6.

Figure 5: Pin fins staggered heat transfer geometry

Figure 6: A pin fin thermal cell

In 3D-ICE, the heat transfer coefficients calculations for two specific test cases have been implemented
that uses the darcy velocity of the coolant in the cavity. These computations for the convective
resistance are based on empirical studies on these geometries performed in [3] and the resulting
formulae (where vdarcy is the darcy velocity in m/s):

HTC inline=
2.526×10− 5

(vdarcy
1 m / s

+1.35)
0 .64 +1.533×10

− 6

HTCstaggered=
2 .526×10−5

(vdarcy
1 m / s

+1.35)
1 .52+1 .533×10

− 6

B. Inputs to 3D-ICE
3D-ICE accesses all the information needed to emulate a 3D IC from two different types of input files and
these constitute a 3D-ICE project:

 Stack Description File: The stack description file or the “stack descriptor” is the project file
created by the user to describe the 3D IC thermal problem that will be solved. It contains

11

information about the structure, material properties of the 3D Stack, the description of the
various heat sinks in the system, the discretization parameters, analysis parameters, and finally,
commands to 3D-ICE for printing out the desired outputs from the simulation. Please refer to
Section 6.A when writing this file.

 Floorplan File: This file describes the architecture of a 3D IC design as is seen by the thermal
model. It contains information about the location and the size of each major logic block in the
IC, and the corresponding heat dissipation traces, as a function of time. Each die included in the
stack descriptor must have a corresponding floorplan file. Please refer to Section 6.B for
instructions on how to write this file.

C. Convention and Terminology
In 3D-ICE, both Cartesian coordinates and cardinal directions are used to describe the location of
cells/nodes and direction of heat flow in the structure. The indices of cells/nodes along the x direction
(WEST-EAST) are sometimes referred to as columns, the indices along the y direction (SOUTH-NORTH)
are sometimes referred to as rows, and the indices along the z direction (BOTTOM-TOP) sometimes
referred to as layers. Also, the word length is used primarily to refer to dimensions in the x direction, the
term width is used for the y direction and the term height is used for the z direction unless otherwise
specified. A typical solid thermal cell along with the coordinate systems used in the library is shown in
Fig. 1.

The corresponding model for a liquid cell is shown in Fig. 2. Note that the current sources shown here
correspond to the fluid flow in the microchannels. In this library, only flow direction NORTH or +y is
supported, and hence, when microchannels used in a 3D-IC structure, they are always laid out facing
SOUTH-NORTH (with the inlet being at the southern end and the outlet at the northern end of the
channels). Hence, the northern edge of the IC is expected to be the hottest and the southern end of the
IC is expected to be the coldest in any analysis. It is up to you to decide your floorplanning of the ICs
accordingly.

The syntaxes used in this document for describing how these input files must be written are based on
the following convention:

[: … :] POSIX characters class

… | … OR- either of the two elements must be used

[…]? an optional element

[…]+ one or more of this element must be used

[…]* zero or more of this element must be used

Within the files, keywords must be written in low case and all the white spaces belonging to

 [:space:]

will be skipped during the parsing. Identifiers (referred to as ID) must match the following expression:

[:alpha:] [_ | [:alnum:]]*

12

Floating points values (referred to as DVALUE) must belong to

[+|-]? [:digit:]+ [\. [:digit:]+ [[e|E] [+|-]? [:digit:]+]?]?

Please refer to the flex sources in 3D-ICE/flex for more details. It is also possible to insert comments at
the end of a line (//) or to comment an entire block (/* ... */) of the input files (similar to C or C++).

13

7.Creating a 3D-ICE project
As mentioned in Section 6.B, a 3D-ICE project consists of writing a stack descriptor file and one or more
floorplan files. See the example Stack Description File and Floorplan files providedin the ./bin folder
for reference.

A. Stack Description File
The stack description file (*.stk) is a netlist that specifies all the physical and geometrical properties of
the 3D-IC for the simulation. The extension of the file is not relevant-it will beparsed independent of its
presence or content.

The stack description file contains EIGHT main sections (mandatory and optional) and they must be
declared in this order:

1. Materials
2. Heat sink
3. Liquid-cooled cavity
4. Layers
5. Dies
6. Dimensions
7. Stack
8. Analysis options
9. Output instructions

The following description of each of these sections is NOT in the above-mentioned order for ease of
presentation and coherence.

i. Materials
The first section of the file contains the list of materials and their properties to be used in the simulation.
At least one material must be declared. Materials are declared with the syntax,

material MATERIAL_ID :

thermal conductivity DVALUE ;

volumetric heat capacity DVALUE ;

where

 MATERIAL_ID is a unique identifier to refer to this material,
 thermal conductivity is expressed in W/μm K ,
 volumetric heat capacity is expressed in J/μm3K.

Materials declared here but not used in the following sections (channel, dies or stack) will be reported
with a warning message (stderr).

14

Example
material SILICON :

thermal conductivity 1.300e-04 ;
volumetric heat capacity 1.628e-12 ;

ii. Layers
A layer is a horizontal section of the stack with a given thickness and made by a given material. A layer
declared in this section can be further cited/used when declaring the sequence of stacked elements in
the 3D IC later in the file. Layers declared in this optional section of the file can be referred only in the
stack section but not when declaring a die. Layers can be declared with the following syntax:

layer LAYER_ID :

height DVALUE ;

material MATERIAL_ID ;

where

 LAYER_ID is a unique identifier to refer to this layer,
 height is expressed in μm,
 MARIAL_ID is the (previously declared) identifier of the material composing the layer.

Example
layer PCB :

height 10 ;
material BEOL ;

iii. Dies
A die is a group of layersstacked together to form a single entity that is used when declaring the
sequence of stacked elements of the 3D IC later in the file. This can represent an actual IC die in the
stack. You can declare multiple dies, and use a single die multiple times during the stack description. The
Dies section is mandatoryand must contain at least one die element. A die must contain one source layer
(the term source layer is used to denote those layers of the stack which contain active electronic
components, and hence, provide the heat source for the simulation) and zero or more passive layers.
The source layer can be placed at any location in the stack of layers in a die.

die DIE_ID :

[layer IVALUE MATERIAL_ID ;]*

source IVALUE MATERIAL_ID ;

[layer IVALUE MATERIAL_ID ;]*

where

15

 DIE_ID is the unique identifier used to refer to the declared die,
 IVALUE is the height of the layer (in µm),
 MATERIAL_ID is the (previously declared)identifier of the material composing the layer.

The order of the layers within the die reflects their vertical disposition in the 3D IC, i.e., the first layer
declared is the top most layer in the die (closer to the ambient) while the last one is the one at the
bottom (closer to the PCB). Two examples of die declaration and their illustrations (not to scale) are
shown below.

Example

die TOP_IC:
source 2 SILICON;
layer 50 SILICON;

Figure 7: A 2-layer die

die BOTTOM_IC:
layer 10 BEOL;
source 2 SILICON;
layer 50 SILICON;

Figure 8: A 3-layer die

iv. Heat Sink
This is an optional section to model convective heat exchange with the surrounding environment and
heat dissipation of the IC through the PCB. All the faces of the 3D IC stack are modeled as adiabatic
walls by default. When the top or bottom Heat Sink is specified, the corresponding surface of the stack is
connected to the ambient via a thermal resistance.

The syntax to add a connection between the IC top and the ambient to simulate convective heat
exchange is:

top heat sink :

heat transfer coefficient DVALUE ;

temperature DVALUE ;

The syntax to add a connection between the IC bottom and the ambient to simulate heat exchange
through the PCB is:

16

bottom heat sink :

heat transfer coefficient DVALUE ;

temperature DVALUE ;

where

 heat transfer coefficient of the heat sink is expressed in W/µm2K,
 temperature is the ambient temperature expressed in K.

Both syntaxes connect the nodes of the 3D-IC directly to the environment, without adding thermal cells.

Example

top heat sink:
heat transfer coefficient 1.0e-7;
temperature 300;

Figure 9: Top heat sink

Pluggable heat sinks
3D-ICE starting from version 3.0.0 supports a pluggable heat sink interface that allow it to perform co-
simulation with a separate heat sink model. Refer to the chapter “Co-simulation and plugin interface”
for more information about co-simulation in 3D-ICE.

The syntax to add a pluggable heat sink is:

top pluggable heat sink :

spreader length DVALUE, width DVALUE, height DVALUE ;

material MATERIAL_ID ;

plugin PATH [, ARGS] ;

where

 length, width, height are the dimensions of the heat spreader in µm,
 MATERIAL_ID is the spreader material
 PATH is the path to the heat sink plugin
 ARGS is an optional string of arguments passed as-is to the plugin (like the command line

arguments of an executable program)

17

Example

top pluggable heat sink:
spreader length 2e4,
 width 2e4,
 height 1e3;
material COPPER;
plugin “plugin.so”, “plugin-args”;

Figure 10: Pluggable heat sink

v. Liquid-cooled cavity
The Liquid-cooled cavity(henceforth referred to simply as “cavity”) section provides3D-ICE information
about the interlayer liquid-cooled heat sink. Since in a given 3D IC design, all interlayer cavities are
designed identically, only one declaration of (and one type of) cavity is allowed. As mentioned earlier,
there are four types of cavities in 3D-ICE and the flow of coolant is always the SOUTH-NORTH or +y
direction. This section can be omitted for simulating a 3D IC without liquid cooling (solid only).

Microchannel 4-resistor model
microchannel4rm :

height DVALUE ;

channellengthDVALUE ;

wall lengthDVALUE ;

[first wall length DVALUE ;]?

[last wall length DVALUE ;]?

wall material MATERIAL_ID ;

coolant flow rate DVALUE ;

coolant heat transfer coefficient [DVALUE | side DVALUE ,

top DVALUE ,

bottom DVALUE] ;

coolant volumetric heat capacity DVALUE ;

coolant incoming temperature DVALUE ;

where

 height (in µm) corresponds to the height of the microchannel layer. This must exactly
correspond to the microchannel height from the surface of the top wall to the surface of the
bottom wall because of the 4RM-CTTM and 2RM-CTTM modeling requirements. Solid walls
bounding the top and bottom faces of the microchannel would constitute new layers that
should be declared separately,

18

 channellength and walllength are the cross sectional lengths of the channel and the wall (in
the x direction, all in µm). During the discretization of the system (see the Dimensions section
for more details), 3D-ICE automatically starts with a wall at the eastern most end of the layer,
and alternate channels and walls along the x direction. But the user must ensure that
dimensions are such that the layer always ends with a wall (in other words, the number of
columns must always be an odd number),

 first wall length and last wall length(in µm) are optional properties that represents the
length of the western-most (the first column) and eastern-most (the last column) walls. This
option has been included since, during the fabrication of microchannels on the back of the
substrate, although the etching mask pattern is predominantly regular, there are chances of
irregularities at the ends, or there might be a deliberate use of different dimensions for the first
and the last wall to preserve uniformity and symmetry of heat transfer coefficient. If one of
these two dimensions(or both) is not declared, then the wall length will be used at its
corresponding location,

 MATERIAL_ID is the identifier of the material composing the walls (the ID must be previously
declared in the materials section),

 coolant flow rate is expressed (in ml/min) and it refers to the volume of coolant flowing per
unit time per channel layer (cavity) in the stack. If you have multiple layers of microchannels, the
total flow rate must be divided by the number of channel layers and given as a single input,

 coolant heat transfer coefficient is the Heat Transfer Coefficient of convective heat
removal from the walls into the coolant (in W/µm2K). It is possible to specify a single value of
HTC for all the wetted surfaces of the microchannel or specify three different values- one for the
side wall surfaces, one for the top and one for the bottom wall surface of the microchannel.

 coolant volumetric heat capacity is expressed in J/µm3K,
 coolant incoming temperature is the inlet coolant temperature expressed in K.

Example
microchannel4rm:

height 100 ;
channel length 50;
wall length 50;
first wall length 25;
last wall length 25;
wall material SILICON;
coolant flow rate 42;
coolant heat transfer coefficient

side 2.7132e-8,
top 5.7132e-8,

bottom 4.7132e-8;
coolant volumetric heat capacity

4.172e-12;
coolant incoming temperature

300;

Figure 11: Microchannel cavity layer

Microchannel 2-resistor model
microchannel2rm :

height DVALUE ;

19

channel length DVALUE ;

wall length DVALUE ;

wall material MATERIAL_ID ;

coolant flow rate DVALUE ;

coolant heat transfer coefficient [DVALUE | top DVALUE ,

bottom DVALUE] ;

coolant volumetric heat capacity DVALUE ;

coolant incoming temperature DVALUE ;

Note that the only change from microchannel-4rm model is the omission of the first- and the last-wall
widths and the side-way heat transfer coefficient, as was described in Section 5.A.ii. Also, remember
that these heat transfer coefficients are effective “projections” of the heat transfer coefficients on the
top and the bottom surfaces of the cavity. If you have the top, bottom and side heat transfer coefficients
(HTCs) for a microchannel structure, you can compute these effective HTCs using the following formulae
[2]:

HTC top,eff=
HTCtop× channelwidth+HTCside× channel height

channel pitch

HTCbottom,eff=
HTCbottom× channelwidth+HTCside×channel height

channel pitch

Example
microchannel2rm:

height 100 ;
channel length 50;
wall length 50;

wall material SILICON;
coolant flow rate 42;

coolant heat transfer coefficient
top 5.5698e-8,

bottom 5.0698e-8;
coolant volumetric heat capacity

4.172e-12;
coolant incoming temperature

300;

Figure 12: Microchannel cavity layer

Pinfins
pinfin:

height DVALUE ;

pin diameter DVALUE ;

pin pitch DVALUE ;

pin distribution [inline | staggered] ;

pin material MATERIAL_ID ;

20

darcy velocity DAVLUE ;

coolant volumetric heat capacity DVALUE;

coolant incoming temperature DVALUE;

where

 height (in µm) corresponds to the height of the pinfin layer. This must exactly correspond to
the height of the pins in accordance with the 2RM-CTTM model,

 pin diameter and pin pitch are diameter and the pitch (all in µm) of the pins. 3D-ICE uses
this information to compute the pin density and the porosity of the model,

 pin distribution defines the type of pinfin distribution- inline for inline (Fig. 4) and
staggered for staggered (Fig. 5),

 MATERIAL_ID is the identifier of the material composing the pins (the ID must be previously
declared in the materials section),

 darcy velocity is expressed (in µm/sec) and it refers to the darcy velocity in the cavity. This is
used instead of the coolant flow rate because darcy velocities are more commonly measured
quantities in experiments and CFD simulations due to their geometry independence, and more
useful while expressing the heat transfer coefficient correlations in empirical studies.

Example (Pinfins inline)
pinfin:

height 100 ;
pin diameter 50 ;
pin pitch 100 ;
pin distribution inline ;
pin material silicon ;
darcy velocity 1.1066e+06 ;
coolant volumetric heat capacity
4.172638e-12 ;
coolant incoming temperature
300.0 ;

Figure 13: Pinfin inline cavity layer

Example (Pinfins staggered)
pinfin:

height 100 ;
pin diameter 50 ;
pin pitch 100 ;
pin distribution staggered ;
pin material silicon ;
darcy velocity 1.1066e+06 ;
coolant volumetric heat capacity
 4.172638e-12;
coolant incoming temperature
300.0 ;

Figure 14: Channel layer

Note: If neither the conventional nor the liquid-cooled heat sink is declared in the Stack Description File,
then the parsing will end with a warning message. Note that this would cause the temperatures to blow
up unbounded with time in the presence of non-zero heat sources.

21

vi. Dimensions
This section of the Stack Description File declares the x-y dimensions of the entire chip and the
discretization sizes for the thermal cells (all in µm).

dimension :

chip length DVALUE , width DVALUE ;

cell length DVALUE , width DVALUE ;

[non-uniform DVALUE ;]?

Uniform mode

By default or when non-uniform mode is disabled (non-uniform 0;), 3D-ICE will discretize the chip’s
uniformily. In this case, the entire chip is discretized based on the same cell length (along x direction)
and width (along y direction) values. The discretization along the z direction is not specified, since the
height of a thermal cell is taken to be the same as the height of the layer in which it exists as shown for a
layer in Fig. 16. However, if you want a finer discretization than that along the z direction, then you will
have to split the layer into multiple layers of the same material stacked on the top of each other in the
declaration of die/stack, as shown in Fig. 17 (here h1+h2=h).

Figure 15: Discretization of a single layer

Figure 16: Discretization of a single layer split into 2 layers

Example
dimension :

chip length 10000, width 10000;
cell length 50, width 50;

If the microchannel 4-resistor model is used, the cell length is determined solely based on the cross
sectional dimensions of channel and wall in the Channel section of the Stack Description File. This is
because the 4RM-CTTM modeling used in 3D-ICE requires that the entire cross section of the
microchannel be a part of the thermal cell. This means that the cell length at some position along the x

22

direction in the model is dependent upon the channel or the wall cross sectional width at that point.
Note that given different values of channel length, wall length, first wall length and last wall
length, the discretization along this direction will be non-uniform in the simulator. For all other liquid-
cooled cavity types, the cell length and cell width are necessary and sufficient to create a uniform
discretization of the entire structure.

For the purpose of illustration, the discretized domain corresponding to the stacked structure built in
Fig. 15 is shown in Fig. 18. Note that the cell length must still be declared in all cases, in spite of the
fact that it will be ignored during the parsing when microchannel 4-resistor model cavity is used.

Figure 17: Discretized computational domain for the stack shown in Fig. 15

Non-uniform mode

When non-uniform mode is enabled (non-uniform 1;), 3D-ICE will discretize the chip based on the cell
length (along x direction) and width (along y direction) values. For instance, 200x200 in the following
example. The default discretization granularity can be overwritten later in the stack and floorplan's
definition.

Example
dimension :

chip length 10000, width 10000;
cell length 50, width 50;
non-uniform 1;

Contrary to the uniform mode, the discretization level of each layer strictly follows its own discretization
setting and will not be overwritten by the microchannel’s channel length setting. Note that due to the
complexity of liquid cooling, the microchannel layer still follows the same discretization method as the
uniform mode.

23

Problem Complexity
Remember that the dimensions of the chip, together with the dimensions of the thermal cells will
directly affect the performance of the simulation. Indeed, the number of cells (nodes) influences both
the amount of memory used by the library and the time needed to solve the linear system[1]. The main
computational effort of the simulator is incurred during the execution of SuperLU and blas libraries.
Specifically, the LU factorization of the system matrix is the most time/memory intensive. Hence, for
large problem sizes, the availability of memory must be ensured to prevent this step from failing during
the simulation.

vii. Stack
This section builds the vertical structure of the stack. The stack is composed of Dies (as previously
declared) and layers and/or channels.

stack :

[layer LL_IDLAYER_ID [discretization DVALUE DVALUE]? ; |

channel CC_ID ; |

die DD_ID DIE_ID floorplan "PATH" [discretization DVALUE DVALUE]?;]
+

where

 LL_ID, CC_ID and DD_ID are identifiers used to name the stack elements and they can be used in
the simulator code to refer to the corresponding element. They must be unique for each
element,

 LAYER_ID is the identifier of a layer (as previously declared).
 DIE_ID is the identifier of a die (as previously declared) and PATH is the path to the floorplan file.

This floorplan will be placed on the declared source layer in the definition of the die. The
floorplan files contain information of the location and power dissipation activity of various
floorplan components for the given die (see the description of Floorplan Files for more details).
The same DIE_ID can be used multiple times (with different identifiers DD_ID) in a stack with the
same or different floorplans, if identical/similar dies exist in a single IC.

 [discretization DVALUE DVALUE]? is the optional discretization level for layers or die. This
argument only takes effect in the non-uniform mode. In the non-uniform mode, If the
discretization level is not specified, the layer or die will take default values from the dimension
setting. Otherwise, the defined discretization values will overwrite the default one derived from
the dimension setting. In this way, the user can have a fully custom discretization design for
different layers.

Note that the keyword “channel” is used to specify the cavity in the stack- irrespective of which type of
interlayer cavity (microchannels or pin fins) was declared in the stack descriptor.

24

The above grammar for the stack section is not the representative of the real syntax that is supported
and is only given for simplicity. For instance, the three main elements (layer, dieand channel) that
compose the stack can be declared in any order butthe final stack sequence must satisfy the following
constrains:

 there must be at least one die
 it cannot begin or end with a cavity (i.e., liquid-cooled cavities can’t be the bottommost or the

topmost layers in a stack)
 there cannot be two consecutive cavities
 cavities can be used only if previously declared
 layers are optional

Declaring a layer in a stack is not mandatory but we left this option to support stacks with irregular
patterns of dies and channels or to build auxiliary layers (such as a bonding layer).

As in the case of defining dies, the final sequence of stack elements reflects their vertical disposition.
The first stack element corresponds to the topmost element while the last element declared is closest to
the PCB.

Example: uniform mode

material SILICON :
thermal conductivity 1.30e-4;
volumetric heat capacity 1.628e-12;

material BEOL :
thermal conductivity 2.25e-6;
volumetric heat capacity 2.175e-12;

top heat sink:
 heat transfer coefficient 1e-07 ;
 temperature 300 ;

microchannel4rm:
height 100 ;
channel length 50;
wall length50;
first wall length 25;
last wall length 25;
wall material SILICON;
coolant flow rate 42;
coolant heat transfer coefficient

top 5.7132e-8,
bottom 4.7132e-8;

coolant volumetric heat capacity
4.172e-12;

coolant incoming temperature 300;

layer PCB:
 height 10 ;
 material BEOL ;

die TOP_IC:
source 2 SILICON;
layer 50 SILICON;

Figure 18 (a): Complete stack

25

die BOTTOM_IC:
layer 10 BEOL;
source 2 SILICON;
layer 50 SILICON;

dimension :
chip length 10000, width 10000;
cell length 50, width 50;

stack:
die MEMORY_DIE TOP_IC floorplan “./mem.flp”;
channel TOP_CHANNEL;
die CORE_DIE BOTTOM_IC floorplan “./core.flp”;
channel BOTTOM_CHANNEL;
layer BOTTOM_MOST PCB ;

Example: non-uniform mode

material SILICON :
thermal conductivity 1.30e-4;
volumetric heat capacity 1.628e-12;

material BEOL :
thermal conductivity 2.25e-6;
volumetric heat capacity 2.175e-12;

top heat sink:
 heat transfer coefficient 1e-07 ;
 temperature 300 ;

layer PCB:
 height 10 ;
 material BEOL ;

die TOP_IC:
source 2 SILICON;
layer 50 SILICON;

die BOTTOM_IC:
layer 10 BEOL;
source 2 SILICON;
layer 50 SILICON;

Figure 18 (b): Complete stack and discretization

dimension :
chip length 10000, width 10000;
cell length 50, width 50;
non-uniform 1;

stack:
die MEMORY_DIE TOP_IC floorplan “./mem.flp” discretization 3 3;
channel TOP_CHANNEL;
die CORE_DIE BOTTOM_IC floorplan “./core.flp”discretization 5 5;
channel BOTTOM_CHANNEL;
layer BOTTOM_MOST PCB ;

viii. Analysis options
In 3D-ICE either transient or steady state simulations can be performed.

solver:

26

[steady | transient step DVALUE, slot DVALUE] ;

initial temperature DVALUE ;

where

 steady and transient indicate steady state and transient analysis respectively,
 step corresponds to the internal stepping time (in sec) to be used in the transient simulation in

3D-ICE (note that while performing co-simulation this is also the step at which the heat sink
model will be simulated),

 slot is the slot time (in sec) for which each power value in the floorplan file lasts for in the
transient simulation (see Section 6.B). This value must be greater or equal to the stepping time
value,

 initial temperature denotes the initial temperature (in K) for the simulation.

Example (steady state)
solver :

steady;
initial temperature 300.0;

Example (transient)
solver :

transient step 0.02, slot 0.2;
initial temperature 300.0;

ix. Output Instructions
A variety of outputs can be obtained from 3D-ICE simulations, a temperature and power. In this last
section of the stack descriptor, various output instructions can be provided for this purpose. The syntax
for these instructions follow the model of conventional circuit simulators.

output:

[T(VER_ID, DVALUE, DVALUE, "PATH" [, INSTANCE_ID]?) ; |

Tflp(DD_ID, "PATH", OUTTYPE_ID [, INSTANCE_ID]?) ; |

Tflpel(DD_ID.FLPEL_ID, "PATH", OUTTYPE_ID [, INSTANCE_ID]?) ; |

Tmap(VER_ID, "PATH" [, INSTANCE_ID]?) ; |

Pmap(DD_ID, "PATH" [, INSTANCE_ID]?) ; |

Tcoolant(CC_ID, "PATH", OUTTYPE_ID [, INSTANCE_ID]?) ;]+

where

 T is an instruction to print the temperature of a particular thermal cell, identified by its three-
dimensional coordinates in the thermal grid, in a text file. The output format consists of two
columns- the time instance (in sec) against the corresponding temperature value (in K).

27

T(VER_ID, DVALUE, DVALUE, "PATH" [, INSTANCE_ID]?) ;

o VER_ID specifies the “z” location of the thermal cell. This can assume a value ofLL_ID,
DD_ID or a CC_ID (see Section 6.A.v). If a die (DD_ID) is specified, then the thermal cell
would be located in the source layer of that die,

o D_VALUE, D_VALUE (in μm) specify the “x” and “y” locations of the thermal cell. An error
message is printed if the location specified is outside of the computational domain,

o PATH is the path of the text file in which the output must be written,
o INSTANCE_ID is an optional parameter that can assume a value of step, slot or final

and specifies the frequency in which the output must be reported- at the end of each
internal time step, at the end of each time slot, or only at the end of the simulation
respectively. Note that in the case of steady state simulation, only those instructions
that have the option final are executed. When no parameter is specified, final is
assumed,

 Tflp is an instruction to print the temperature of a particular floorplan (the source layer of a
particular die), identified by its die identifier (DD_ID). The output format consists of two
columns- the time instance (in sec) against the corresponding temperature value (in K).

Tflp(DD_ID, "PATH", OUTTYPE_ID [, INSTANCE_ID]?) ;

o DD_ID is the identifier of the die whose floorplan temperature must be printed.
o PATH is the path of the text file in which the output must be written,
o OUTTYPE_ID specifies the exact nature of the temperature to be reported, and can

assume the values maximum, minimum or average, corresponding maximum, minimum
and average temperature in the floorplan respectively,

o INSTANCE_ID is an optional parameter that can assume a value of step, slot or final
and specifies the frequency in which the output must be reported- at the end of each
internal time step, at the end of each time slot, or only at the end of the simulation
respectively. Note that in the case of steady state simulation, only those instructions
that have the option final are executed. When no parameter is specified, final is
assumed.

 Tflpel is an instruction to print the temperature of a particular floorplan element (the power
block of the source layer of a particular die), uniquely identified by its die identifier (DD_ID) and
floorplan element identifier (FLPEL_ID). The output format consists of two columns- the time
instance (in sec) against the corresponding temperature value (in K).

Tflpel(DD_ID.FLPEL_ID, "PATH", OUTTYPE_ID [, INSTANCE_ID]?) ;

o DD_ID.FLPEL_ID contains the die and the floorplan element identifier (see Section 6.B)
which can uniquely identify a floorplan element in the entire stack,

o PATH is the path of the text file in which the output must be written,

28

o OUTTYPE_ID specifies the exact nature of the temperature to be reported, and can
assume the values maximum, minimum or average, corresponding maximum, minimum
and average temperature in the floorplan element area respectively,

o INSTANCE_ID is an optional parameter that can assume a value of step, slot or final
and specifies the frequency in which the output must be reported- at the end of each
internal time step, at the end of each time slot, or only at the end of the simulation
respectively. Note that in the case of steady state simulation, only those instructions
that have the option final are executed. When no parameter is specified, final is
assumed.

 Tmap is an instruction to print the temperature map of a particular layer in the stack, identified
by its identifier. The output is printed in a matrix format in a text file, with each line representing
a row of thermal cells in the thermal grid (counted in “y” direction), and every temperature
value (in K) in each line corresponding to a thermal cell (columns, counted in the “x” direction).
Once the temperature map at a given time point is printed in this format, the temperature map
at the next time point requested is printed from the next line in the same format. Hence, the
total number of lines in the file is the product of the number of rows in the thermal grid and the
number of instances the output is printed. In addition, whenever the instruction Tmap is used in
a project, two other files, named “x_axis.txt” and “y_axis.txt” are printed which consist of
the indices of the columns and rows (in μm), respectively, for these temperature maps. They can
be used to visualize the data in the text files with the help of applications supporting graphical
outputs such as Matlab.

Tmap(VER_ID, "PATH" [, INSTANCE_ID]?) ;

o VER_ID identifies the layer for which the temperature map must be printed. This can
assume a value of LL_ID, DD_ID or a CC_ID (see Section 6.A.v). If a die (DD_ID) is
specified, then the source layer of that die is used,

o PATH is the path of the text file in which the output must be written,
o INSTANCE_ID is an optional parameter that can assume a value of step, slot or final

and specifies the frequency in which the output must be reported- at the end of each
internal time step, at the end of each time slot, or only at the end of the simulation
respectively. Note that in the case of steady state simulation, only those instructions
that have the option final are executed. When no parameter is specified, final is
assumed.

 Pmap is an instruction to print the power map of a particular die in the stack, identified by its
identifier. The output is printed with the same criteria implemented to print a temperature map.

Pmap(DD_ID, "PATH" [, INSTANCE_ID]?) ;

o DD_ID identifies the die for which the power map must be printed.
o PATH is the path of the text file in which the output must be written,
o INSTANCE_ID is an optional parameter that can assume a value of step, slot or

final and specifies the frequency in which the output must be reported- at the end
of each internal time step, at the end of each time slot, or only at the end of the

29

simulation respectively. Note that in the case of steady state simulation, only those
instructions that have the option final are executed. When no parameter is
specified, final is assumed.

 Tcoolant is an instruction to print the temperature of the coolant at the outlet of a cavity
identified by its channel identifier (CC_ID). The output format consists of two columns- the time
instance (in sec) against the corresponding temperature value (in K).

Tcoolant(CC_ID, "PATH", OUTTYPE_ID [, INTANCE_ID]?) ;

o CC_ID is the identifier of the cavity whose outlet temperature must be printed,
o PATH is the path of the text file in which the output must be written,
o OUTTYPE_ID specifies the exact nature of the temperature to be reported, and can

assume the values maximum, minimum or average, corresponding maximum, minimum
and average outlet temperature respectively,

o INSTANCE_ID is an optional parameter that can assume a value of step, slot or final
and specifies the frequency in which the output must be reported- at the end of each
internal time step, at the end of each time slot, or only at the end of the simulation
respectively. Note that in the case of steady state simulation, only those instructions
that have the option final are executed. When no parameter is specified, final is
assumed.

Examples
Two example stack descriptor files, one steady state and one transient, based on the above discussions
are shown below.

Example (steady state)

material SILICON :
thermal conductivity 1.30e-4;
volumetric heat capacity 1.628e-12;

material BEOL :
thermal conductivity 2.25e-6;
volumetric heat capacity 2.175e-12;

top heat sink:
heat transfer coefficient 1.0e-7;
temperature 300;

microchannel4rm:
height 100 ;
channel length 50;
wall length50;
first wall length 25;
last wall length 25;
wall material SILICON;
coolant flow rate 42;
coolant heat transfer coefficient top 5.7132e-8,

30

bottom 4.7132e-8;
coolant volumetric heat capacity4.172e-12;
coolant incoming temperature300;

layer PCB:
height 10 ;
material BEOL ;

die TOP_IC:
source 2 SILICON;
layer 50 SILICON;

die BOTTOM_IC:
layer 10 BEOL;
source 2 SILICON;
layer 50 SILICON;

dimension :
chip length 10000, width 10000;
cell length 50, width 50;

stack:
die MEMORY_DIE TOP_IC floorplan"./mem.flp";
channel TOP_CHANNEL;
die CORE_DIE BOTTOM_IC floorplan"./core.flp";
channel BOTTOM_CHANNEL;
layer BOTTOM_MOST PCB ;

solver:
steady ;
initial temperature 300.0 ;

output:
T(MEMORY_DIE, 5000, 3000, "output1.txt",final);
Tmap(CORE_DIE, "output2.txt", final);
Pmap(CORE_DIE, "output3.txt", final);
Tflpel(CORE_DIE.core1, "output4.txt", average);
Tcoolant(TOP_CHANNEL, "output5.txt", maximum);

Example (transient)

material SILICON :
thermal conductivity 1.30e-4;
volumetric heat capacity 1.628e-12;

material BEOL :
thermal conductivity 2.25e-6;
volumetric heat capacity 2.175e-12;

top heat sink:
heat transfer coefficient 1.0e-7;
temperature 300;

microchannel4rm:
height 100 ;
channel length 50;
wall length 50;
first wall length 25;
last wall length 25;
wall material SILICON;
coolant flow rate 42;
coolant heat transfer coefficient top 5.7132e-8,

bottom 4.7132e-8;
coolant volumetric heat capacity 4.172e-12;

31

coolant incoming temperature 300;

layer PCB:
height 10 ;
material BEOL ;

die TOP_IC:
source 2 SILICON;
layer 50 SILICON;

die BOTTOM_IC:
layer 10 BEOL;
source 2 SILICON;
layer 50 SILICON;

dimension :
chip length 10000, width 10000;
cell length 50, width 50;

stack:
die MEMORY_DIE TOP_IC floorplan “./mem.flp”;
channel TOP_CHANNEL;
die CORE_DIE BOTTOM_IC floorplan “./core.flp”;
channel BOTTOM_CHANNEL;
layer BOTTOM_MOST PCB ;

solver:
transient step 0.02, slot 0.2 ;
initial temperature 300.0 ;

output:
T(MEMORY_DIE, 5000, 3000, "output1.txt",step);
Tmap(CORE_DIE, "output2.txt", slot);
Pmap(CORE_DIE, "output3.txt", slot);
Tflp(MEMORY_DIE, "output4.txt", minimum, step);
Tflpel(CORE_DIE.core1, "output5.txt", average, final);
Tcoolant(TOP_CHANNEL, "output6.txt", maximum);

B. Floorplan File
Every die in the stack must be related to a "Floorplan File" (*.flp), whichessentially provides the power
dissipation profile (or heat sources) for the simulation. Each Floorplan file must contain the list of
functional blocks (cores, caches, memories, etc), their positions, and the power dissipation as a function
of time.

Every functional block, here called floorplan element, is an area inside the die, laid out in the source
layer. Each floorplan element has a unique identifier- the name it is assigned. In addition, the position
and the dimensions of each floorplan element are given (in μm) based on the same Cartesian
coordinates that was used for building the stack, with the origin at the SOUTH-WEST corner of the
source layer. An example floorplan of a 1cmX1cm die with the reference coordinates is shown in Fig. 19.
All the distances shown here are in μm.

A floorplan element in the Floorplan File is declared using the following syntax.

IDENTIFIER :

32

position DVALUE , DVALUE ;

dimension DVALUE , DVALUE ;

[discretization DVALUE, DVALUE ;]?

[power values DVALUE [, DVALUE]*]? ;

Or, if its surface cannot be represented as a simple rectangle, the following syntax is also supported(only
in the uniform mode):

IDENTIFIER :

[rectangle (DVALUE , DVALUE , DVALUE , DVALUE) ;]+

[power values DVALUE [, DVALUE]*]? ;

where

 IDENTIFIER is the unique identifier used to name the floorplan element. This string must be
unique within the floorplan file it belongs to but it can be used on a different file,

 position, is the (x,y) coordinate of the SOUTH-WEST corner of the floorplan element (in μm),
 dimension is the (length, width) dimensions of the floorplan element (in μm),
 rectangle is the (x,y, length, width) description of a part of the floorplan element (in μm)
 The DVALUE(s) against the keyword power values are the list of power dissipation values

(expressed in W) of the floorplan element for each time slot (scroll down for the explanation of
time slots in 3D-ICE) separated by commas.

 [discretization DVALUE, DVALUE ;]? is the discretization level the floorplan element has.
This argument only takes effect in non-uniform mode. If this argument is not specified, it
inherits the default disretization level the die has.

As an example, the declaration for the Core 0 and the L2 Chache 0 in Fig. 19 with 5 time slots would be
as follows:

Example

L2_Cache_0 :

position 0, 1750;
dimension 1250, 7500;
power values 0.3, 0.3, 0.4, 0.2, 0.3;

Core_0 :
rectangle (0, 0, 1250, 1750) ;
rectangle (1250, 0, 3750, 2000) ;
rectangle (1250, 2000, 2500, 1500) ;
power values 0.5, 0.5, 0.1, 0.1, 0.7;

33

Figure 19: An example floorplan for a 1cmX1cm IC die. Notice the irregular floorplans Core 0, Core 1, Core 2, Core 3.

The following points must be kept in mind while writing the floorplan files:

 Floorplan elements must not overlap. During the parsing of the Floorplan File, the values
describing the elements are checked to verify that all the elements are inside the chip and that
they donot overlap.

 In the non-uniform mode, each floorplan element is discretized into a number of cells following
the discretization setting. There will be no intersect area between different floorplan elements.

 In the uniform mode, when the stack structure is discretized based on the given thermal cell
dimensions, the power dissipated by a floorplan element is uniformly divided among the
thermal cells that intersect its surface. It is not required that the position and dimensions of the
floorplan elements are an exact multiple of the dimensions of the thermal cells. Therefore,
depending on the layout of the IC, a thermal cell can receive the power from different
floorplan elements. For the same reason, a floorplan element can also be smaller than the
thermal cell itself. The assignment of thermal cells to different floorplan elements is illustrated
in Fig. 20.The thermal cell highlighted in the center of the image receives as input the power
coming from the FPU unit, the L1Cache1 and the Core1 at the same time. The power value
consumed by each component will be scaled according to the fraction of the surface of the
thermal cell covered by the corresponding IC unit:

Input=PowerFPU
a1

AreaFPU
+PowerCacheL1

a2
AreaCacheL1

+PowerCore1
a3

AreaCore1

 The same Floorplan File can be assigned to 2 or more dies in the Stack Description File if they
happen to have identical structure and behavior in the design. Each floorplan element in the

34

entire design, in that case, is uniquely identified by the DD_ID identifier of the corresponding die
element and the IDENTIFIER of the floorplan element.

 If two dies in the stack have the same floorplan but during the simulation they have a different
power dissipation activity, then 2 different Floorplan Files must be created for each die and
assigned to the corresponding die element declarations in the Stack Description File. This is
because the power dissipations are directly linked to each floorplan element in the Floorplan
File.

 In the uniform mode, it is possible to have gaps in the floorplan- regions where there is no
floorplan element and hence, no power dissipation. The thermal cells in these regions will
simply not be assigned any source value during the solving of system equations. However, it is
not allowed to have gaps in the floorplan regions in the non-unifrom mode because of its unique
modeling method.

Figure20: Assignment of thermal cells to floorplan elements

Time Slots
The entire time-interval of simulation (ToS) in 3D-ICE is divided into time slots- the minimum time
duration for which the switching activity of the floorplan elements has been resolved. For example, if for
a given design the switching activity (a measure of how much a floorplan component is active, directly
related to its power dissipation) is sampled every 200ms during a 1 second ToS, then there are 5 time
slots for the 3D-ICE simulation. And hence, there must be 5 values of power dissipation for each
floorplan element declaration in the Floorplan File. Conversely, the number of power values for the
floorplan element is interpreted as the number of time slots (NoTS) for the simulation. In all 3D-ICE
simulations, it is assumed that the power dissipation in a particular thermal cell is CONSTANT during the
period of a time slot- calculated based on the power value of the corresponding floorplan element,in
which the thermal cell exists, for that time slot (see Fig. 21).

35

Note that time slot is different from time step, which is the discretization length of the time-domain for
the numerical integration of the system of differential equations representing the entire thermal circuit
created inside 3D-ICE. The exact durations of both time slot and time step are given when running the
simulator. For further details, see Chapter 5.

Figure 21: Power dissipation profile of Core 0 and Core 6 in Fig. 19

Since uniform sampling of the switching activity for all the components in an IC is assumed, the number
of power values given for each floorplan element in the Floorplan File shouldbe the same. Even when
there is zero power dissipation for a particular floorplan element during some time slot (Core 0 at slot #4
in Fig. 21) or if a particular floorplan element has constant power dissipation during some or all time
slots (Core 6 during slot #2 and slot #3 in Fig. 21), the corresponding power values must be mentioned
explicitly for each time slot. The function emulate_slot returns a value indiacting the end of the
simulation whenever if finds a floorplan element with an empty list of power values. Therefore, the ToS
will be determined by the length of the shortest list of power values within all the floorplan elements
that are declared in the dies.

36

8.Co-simulation and plugin interface
3D-ICE starting from version 3.0.0 supports a pluggable heat sink interface that allow it to perform co-
simulation with a separate heat sink model. 3D-ICE pluggable heat sinks can be found in the
heatsink_plugin/heatsinks directory. User-supplied heat sinks can also be simulated. In this
configuration, 3D-ICE simulates the 3D IC stack and an heat spreader connected to the top of the 3D IC
stack, whose dimensions can be larger than the stack itself. If the heat dissipation stack to be simulated
does not include a heat spreader, the last layer of the IC can take the place of the heat spreader.

The simulation of the heat sink is instead performed by a heat sink plugin, in the form of a dynamic
library loaded by 3D-ICE.

Plugin-related files are in the heatsink_plugin directory. This directory contains the following
subdirectories:

 loaders: This directory contains the loader plugins. The 3D-ICE plugin interface exposes a C API
that is directly accessible by C/C++ programs without a loader. Loaders are used to support co-
simulation with higher level programming languages.

Two loaders are currently supported:

◦ FMI: Allows to load plugins that conform to the FMI, or Functional Mockup Interface
(https://fmi-standard.org/). This loader is targeted mainly at Modelica models. This is the
only loader that performs grid pitch mapping between the finite volume grid used by 3D-ICE
and the plugin, as doing this part in C++ is much faster than doing it in Modelica.

◦ Python: Allows to load a python file as a plugin.

 templates: This directory contains example code intended for users who want to learn how to
write a plugin.

 heatsinks: This directory contains heat sink models.

 common: Contains libraries for building heat sinks.

Writing a heat sink in Modelica
Modelica is a declarative object-oriented modeling language. The Modelica syntax allows to write
equations as opposed to assignment statements in ordinary imperative programming languages, and
supports linear and nonlinear differential equations natively through the der() operator. A Modelica
translator uses symbolic equation manipulation to automatically perform the steps needed to produce
imperative code that performs the numerical integration of differential equations. OpenModelica is an
open source Modelica translator that translates Modelica to C code. Modelica is thus a very convenient

37

choice for the modeling of heat sinks, as it is only necessary to write the heat transfer equations instead
of writing the code to solve them. An general introduction to the Modelica language can be found at
https://mbe.modelica.university/front/intro

At the lowest level, modeling an heat sink in Modelica for 3D-ICE co-simulation requires to implement a
model with the following interface:

model Interface3DICE
 parameter String args;
 parameter Modelica.SIunits.Temperature initialTemperature;

 parameter Integer sinkRows;
 parameter Integer sinkColumns;
 parameter Modelica.SIunits.ThermalConductance sinkCellBottomConductance;
 parameter Modelica.SIunits.Length sinkLength;
 parameter Modelica.SIunits.Length sinkWidth;
 parameter Modelica.SIunits.Length spreaderX0;
 parameter Modelica.SIunits.Length spreaderY0;

 Modelica.Blocks.Interfaces.RealOutput T[sinkRows, sinkColumns];
 Modelica.Blocks.Interfaces.RealInput Q_flow[sinkRows, sinkColumns];
end Interface3DICE;

The first two parameters, args and initialTemperature are set by 3D-ICE at the beginning of the
simulation and can be read from the Modelica code.

The other parameters define the sink meshing, thermal conductance towards the spreader, and heat
sink geometry. These parameters must be set by the plugin as they are read by 3D-ICE to connect the
sink to the spreader. The variables sinkRows, sinkColumns, sinkCellBottomConductance,

sinkLength, sinkWidth depend on the heat sink geometry and how it has been modeled, therefore
they are expected to be constants set in the Modelica code. The last two variables, spreaderX0 and
spreaderY0 depend on the placement of the sink relative to the spreader, and it is common practice to
make them configurable from the 3D-ICE stack file by parsing the args variable and assigning them from
Modelica code.

A graphical representation of the sinkLength, sinkWidth, spreaderX0, spreaderY0 parameters
is shown below. Note that Modelica encourages the use of SI units, thus all lengths and widths are in
meters, and not in micrometers unlike in 3D-ICE.

38

https://mbe.modelica.university/front/intro

Finally, the T variable is the heat sink bottom temperature, that 3D-ICE reads at every simulation step,
and Q_flow is the heat flow towards the heat sink, that 3D-ICE sets at each simulation step.

Convenience libraries are provided in the common directory to abstract this interface using Modelica
object-oriented features.

 The HeatsinkBlocks.PartialModels.Interface3DICE is a base class that implements the Interface3DICE
interface and includes the boilerplate code required to parse args and set spreaderX0 and
spreaderY0, as well as code for forwarding of all other parameters from a redeclarable heat
sink model. Further parameter parsing is possible in extended classes, providing a generic way
to pass arbitrary parameters from the 3D-ICE stack description to heat sinks. This class also maps
the causal interface of the the FMI into a-causal heat ports as commonly used to model heat
exchange in Modelica.

 The HeatsinkBlocks.PartialModels.Heatsink is a generic heat sink base class that can be extended to
add the differential equations modeling the desired heat sink.

The example templates/Modelica can be used as a reference to understand how to write a new heat
sink in Modelica. Additionally, looking at the complete heat sinks in the heatsinks directory can be
useful as well.

Editing a Modelica Heatsink using the OMEdit editor
OMEdit is a Modelica IDE, part of the OpenModelica package to simplify writing Modelica code.
Although a complete guide would stray from the purpose of this document, it is important, when

39

Figure 22: Mapping between a generic sized heat sink and
the heat spreader

loading heat sink model using this editor to first load the required libraries in the correct order. First
load the ThermalBlocks library, then the HeatsinkBlocks one and finally the model you intend to edit.

Using a heat sink written in Modelica
Modelica heat sinks require the FMI loader plugin to be interfaced to 3D-ICE, thus the plugin to be
loaded is always fmi_loader.so. This is an example taken from templates/Modelica

top pluggable heat sink :

spreader length 20000 , width 20000 , height 1000 ;

material COPPER ;

plugin "../../loaders/FMI/fmi_loader.so", "Heatsink.TestHeatsink_Interface3DICE 0.0 0.0";

The FMI loader interprets the first argument in the args string as the name of the top level model to
load, in this case Heatsink.TestHeatsink_Interface3DICE. The name must be fully qualified including
the package, and must be a model that implements the Interface3DICE interface. When the model to
be loaded has been obtained by extending the the HeatsinkBlocks.PartialModels.Interface3DICE interface,
there will be two additional parameters that are the to determine how the heat sink is placed on top of
the spreader. The first parameter is spreaderX0, while the second one is spreaderY0. These two
parameter are in meters, not micrometers. Additional heat-sink specific parameters may be required
depending on the heat sink model.

Writing a heat sink in C++ or Python
These languages do not provide a native way of solving differential equations. You need to choose
appropriate libraries for that. Taking as example the C++ plugin template, modeling an heat sink requires
to implement the following class

class HeatSink
{
public:
 HeatSink(unsigned int nRows, unsigned int nCols,

40

 double cellWidth, double cellLength,
 double initialTemperature,
 double spreaderConductance,
 double timeStep
 const std::string& args);

 void simulateStep(const CellMatrix spreaderTemperatures,
 CellMatrix heatFlow);
};

The class constructor is called by 3D-ICE to inform the heat sink plugin of the simulation parameters,
which are

 nRows, nCols the number of rows and columns of thermal cells of the heat spreader,
 cellWidth, cellLength the size of a heat spreader thermal cell, in μm,
 initialTemperature the temperature of the heat spreader at the beginning of the simulation,

in K,
 spreaderConductance the thermal conductance from the center of the heat spreader thermal

cells to their top face, in W/K,
 timeStep the simulation time step in seconds.

Then, the simulateStep member function is called at each simulation time step to update the heat sink
model. Its parameters are

 spreaderTemperatures a matrix provided by 3D-ICE with the current temperatures of the heat
spreader cells. This is an input parameter.

 heatFlow the heat flow from the spreader to the sink. This is an output parameter, that has to
be computed by the plugin.

The HS483 heat sink model
HS483 is a Modelica model for a COTS HS483-ND heat sink, connected to a P14752-ND fan. Fan speed
should be limited in the range from 1500 to 6000RPM (or 0, for natural convection). Power to be
dissipated should be limited to less than 40W. More information is detailed in the model source code.
Two 3D-ICE interfaces are available for this model:
HS483_P14752_ConstantFanSpeed_Interface3DICE: this model has the following parameters

 spreaderX0, spreaderY0: see chapter Writing a heat sink in Modelica
 airTemperature: air temperature in K
 fanSpeed: fan speed in RPM

HS483_P14752_VariableFanSpeed_Interface3DICE: this model has the following parameters
 spreaderX0, spreaderY0: see chapter Writing a heat sink in Modelica
 airTemperature: air temperature in K
 fanSpeedFilename: filename of a table with the fan speed as a function of the simulation time.

The format of this table is the one of the Modelica CombiTimeTable, an example is provided in
the heat sink directory.

41

https://build.openmodelica.org/Documentation/Modelica.Blocks.Sources.CombiTimeTable.html

The cuplex_kryos_21606 heat sink model
cuplex_kryos_21606 is a Modelica model for a COTS uplex kryos NEXT water block from aqua computer,
part number 21606. The water block has been fitted in the range 0.06 to 0.12 l/min. Power to be
dissipated should be limited to less than:

 20W, for a 0.06l/min water flow
 70W, for a 0.08l/min water flow
 80W, for higher water flow rates.

More information is detailed in the model source code.
Two 3D-ICE interfaces are available for this model:
Cuplex21606_ConstantFlowRate_Interface3DICE: this model has the following parameters

 spreaderX0, spreaderY0: see chapter Writing a heat sink in Modelica
 waterTemperature: air temperature in K
 waterFlowRate: water flow rate in l/min

Cuplex21606_VariableFlowRate_Interface3DICE: this model has the following parameters
 spreaderX0, spreaderY0: see chapter Writing a heat sink in Modelica
 airTemperature: air temperature in K
 flowRateFilename: filename of a table with the water flow rate as a function of the simulation

time. The format of this table is the one of the Modelica CombiTimeTable, an example is
provided in the heat sink directory.

9.Network interface for remote simulations
The 3D-ICE software library includes software object that can be used to implement simulations where
two distinct processes, a client and a server, communicate through a network socket. In this interface,
3D-ICE running on a host machine, acts as the server and the some device or external source that
generates the power trace inputs acts as a client. Such set of data structures and functions can be used
whenever it is necessary to decouple the generation of power traces and the control of the simulation
from its execution, which might requires more computational resources. The network interface can be
used in the following scenarios:

 Hardware/software co-simulation: for example, obtaining real-time temperature data from an
architecture being designed and prototyped on an FPGA, testing run-time thermal management
techniques that depend on data from temperature sensors in a real device. For more details, see
[6]

 Creating graphical interfaces that involve communication with other processes running parallel
on a computer.

 Integration in other tools or libraries: for example, floorplanning software, software emulators
for power traces on the same computer that is running 3D-ICE.

42

https://build.openmodelica.org/Documentation/Modelica.Blocks.Sources.CombiTimeTable.html

In particular, it will be useful whenever power traces are not known a priori and cannot be written as
input for the simulation directly in the floorplan file, and for cases where the power traces are too long
and must be read from large data files. The primary project files for a simulation, i.e. the .stk and the flp
files, describing the structure of the IC and the floorplan architecture must still be written and stored in
the server. The client would simply send the power traces that are otherwise entered in the .flp files.
The server performs the thermal simulation and provides the real-time values of the outputs requested
in the .stk file. These values will be sent over a socket back to the client, instead of being printed in a
text file. The client can also send command to the server to request any kind of change of the state of
the simulation (reset temperatures, change flow rate, run simulation steps, etc).

For the usage of the interface, two data types have been added as well as functions to handle them as
done for the other components of the library. These data types are Socket andNetworkMessage and
they will be described in Section 9.

10. Running 3D-ICE
In the 3d-ice/bin/ folder, the main simulator file to be compiled is3D-ICE-Emulator.c. It has been
written to parse and analyze any Stack Description File and the corresponding Floorplan Files placed in
the same folder. Once compiled with the make command, the corresponding executable is acts as the
thermal simulator application. To simulate a new thermal project, you must:

 create the Stack Description File and the corresponding Floorplan Files according to the
instructions in Chapter 6

 run the following command in 3d-ice/bin/
$./3D-ICE-EmulatorPATH

where PATH is the path to the Stack Descriptor File containing the description of the 3D-IC project.

The project is then simulated and the results, as requested in the .stk file, are written in the text files
specified in those instructions by the user.

3D-ICE uses backward Euler method with constant time-stepping to solve the system equations. Hence,
the solution is always numerically unconditionally stable. However, accuracy can be increased by
reducing the time step value. The local truncation error of backward Euler method behaves as O(h2),
where h is the time step. However, given a ToS, the number of time steps in the entire simulation is a
O(1/h) function. Hence, the upper bound of the total accumulated error at the final time point in the
simulation behaves as

O(h2). O(1/h)=O(h).

In other words, the total final error is approximately a linear function of the time step. For RC circuits,
such as the thermal circuit that 3D-ICE solves, it is common practice to have at least 5 time steps for the

43

duration of a rise time of the output temperature (defined as the time duration for the rise of
temperature from 10% to 90% of its steady state value) to resolve the transients accurately.

Numerical stability when using the co-simulation interface
The numerical stability of performing co-simulation of differential equation models is a complex matter
[8]. To not stray from the purpose of this manual, it can be broadly stated that it depends on the
numerical stability of the integration algorithm used by 3D-ICE, on that used by the plugin and, for
extreme values of the integration step, also on the co-simulation interface itself [9].
OpenModelica, the open source Modelica compiler we used for 3D-ICE plugins supports multiple
integration methods, including BDF solvers, Runge Kutta, and forward and backward Euler. However,
this is only true for all-Modelica simulations. When Modelica models are exported as FMI for co-
simulation, OpenModelica currently only supports the forward Euler algorithm, that is not
unconditionally stable and is currently the limiting factor as for lengthening the integration step. In the
future, we expect OpenModelica to implement implicit integration algorithms for FMIs.
It should also be noted that the Modelica environment, not to unduly limit the potential for optimization
given by the choice of solvers, expects users to be responsible of making appropriate choices of solver
algorithms and integration step, and that the fact that an unwise choice could lead to numerical
instability, as well as the capability of correcting such an unwise choice, is common culture and practice
in the Modelica community.
From a practical standpoint, we can thus borrow from the Modelica operational experience, in that
numerical instability in thermal models is easy to detect, as it shows up as negative temperature values
(values in Kelvin cannot be negative), or values exponentially diverging towards infinity. In all cases, with
the present state of FMI support in OpenModelica, the solution to this issue is invariantly to reduce the
numerical integration step.
As in the co-simulation interface the integration step is dictated by the 3D-ICE side, this can be done by
reducing the step parameter in the stack description file.

11. Usage of the 3D-ICE as Software Thermal
Library

3D-ICE, in addition to functioning as a stand-alone thermal simulator, can also serve as a software
thermal library that can be used to build customized applications. Such requires knowledge about the
organization and the use of various functions and data structures that are built into 3D-ICE. With the
release of 3D-ICE 2.0, we are happy to announce that a new, useful tool for the visualization of the
software library, called Doxygen [5], was used to build an online documentation of the 3D-ICE library. It
contains convenient access all information about the functions and the files in the library, including a
hierarchical visualization of the various dependencies between them. This new documentation can be
accessed by running in the make doc command inside the 3D-ICE folder, and then opening
3d-ice/doc/html/index.html on your web browser. We urge users who are interested in employing
3D-ICE to build custom applications to refer to this documentation.

44

Figure 23: Doxygen documentation for 3D-ICE 2.0

A. StackDescription_t, Analysis_t and Output_t
Using 3D-ICE as a software library involves several steps. First, the problem must be initialized and the
necessary data structures containing the 3D IC information must be filled. The three data structures that
storethe description of the IC stackand the configuration of the simulation to be run are,
respectively,StackDescription_t,Analysys_t and Output_t. To use these types, the header files that
must be included in the main file to access the homonym data structures are stack_description.h,
analysis.h and output.h.

These data structure types collect all the data pertaining to the 3D IC structure and floorplans. An
instance of these data typeswill then be related to theStack Description File. The functions available to
initialize, fill and destroyan instance of these two variablesare:

45

 stack_description_init (StackDescription_t*)
 analysis_init (Analysis_t*)
 output_init (Output_t*)

 parse_stack_description_file
(String_t, StackDescription_t*, Analysis_t*, Output_t*)

 stack_description_destroy (StackDescription_t*)
 analysis_destroy (Analysis_t*)
 output_destroy (Output_t*).

In particular, the function parse_stack_description_file,parses he contet of a stack file and places
the information read into the corresponding data structure. This function can be accesses by including
the heard file stack_file_parser.h. The functions to access the information in this data structure are
in the doxygen documentation.

B.ThermalData_t
This data structure type collects all the data needed for the thermal simulation, such astemperatures,
power inputs, matrices representing the system equations, etc. Its type is declared in the header
thermal_data.h. The functions to initialize, build and destroy a ThermalData_t variable are:

 thermal_data_init (ThermalData_t*)
 thermal_data_build

(ThermalData_t*, StackElementList_t* ,Dimensions_t*, Analysis_t*)
 thermal_data_destroy (ThermalData_t*).

Just as an instance ofStackDescripiton_t, Analysis_tand Output_t are tied to a Stack Description
File,an instance ofThermalData_t depends upon the sequence of stack elements in
StackElementList_t (a member of StackDescription_t) and Analysis_t. Henceit is necessary to
initialize and fill theStackDescription_t and Analysis_t variables before filling theThermalData_t
variable. And for the rest of the simulation project, thethree variables must be used in tandem since
they refer to the same problem.

C. Emulation and thermal output
Once the data structures mentioned in the previous sectionshave been filled, the next step is to execute
the simulation. It can be done using the functions

 emulate_step (ThermalData_t*, Dimensions_t*, Analysis_t*)
 emulate_slot (ThermalData_t*, Dimensions_t*, Analysis_t*)
 emulate_steady (ThermalData_t*, Dimensions_t*, Analysis_t*).

emulate_stepincrements the simulation time by a single time step and then terminates- this function
can be called iteratively in a loop until the end of the ToS, controlled using the return variables of these
functions which indicating whether or not the simulation has reached certain epochs (see the
description in the files containing these functions for more details); whileemulate_slotincrements the
simulation time until the simulation time of a single power value finishes.Finally, the
emulate_steadyperforms the steady simulation (one step simulation).

46

Outputs canusually be read from the thermal analysis before, during and at the end of the simulation in
the text files mentioned in the output instructions written in the .stk file of the project. The structure
Output_t stores the list of outputs that should be generated.

If you intend to use 3D-ICE as a software library, there are functions in 3D-ICE that enable the extraction
ofthe thermal state of a single floorplan element, an entire floorplan, a single channel outlet or all the
coolant outlets in a givenchannel layer at any time during the simulation. It is also possible to readthe
temperature of a single thermal cell or print directly the thermal map (a matrix) for a specific layer in the
stack. Some of these functions require you to refer to flooplan elements, layers etc. using the
corresponding identifiers declared in the Stack Description File. The functions available to generate
theoutput are:

 generate_output_headers (Output_t *, Dimensions_t *, String_t)
 generate_output

(Output_t*, Dimensions_t*, Temperature_t*, Source_t*, Time_t, OutputInstant_t)

The first function creates the text files and must be called only once before the simulation. The function
generate_output, instead, must be called whenever the output (as the current thermal state of the IC)
is needed.

To learn more about all the functions and data structures descried above, please refer to the Doxygen
documentation of 3D-ICE in the 3D-ICE/doc/html/ folder.

D.Socket
The client / server communication can be implemented using the data type Socket_t. To use it, the
header file network_socket.h must be included in the source file. The documentation of the functions
that can be used to init, open and close the network sockets, as well as to send or receive messages are
available through the Doxygen documentation.

The following example resumes the communication pattern to follow to establish an exchange of
messages between the two processes. Please note that the server must use the data structure of type
Socket twice: one to handle a socket that waits for connections from a client (this is called server in the
example) and a second one to use to communicate with the client (called client in the example) after
the connection between the two processes has been established. This mechanism of using two different
sockets allows the server to handle many clients at the same time but this functionality is not shown
(implemented) in 3D-ICE-Server.c.

Client 10.0.0.1 Server 10.0.0.2

Socket_t client ; Socket_t server ;
Socket_t client ;

Socket_init (&client) ; Socket_init (&server) ;
Socket_init (&client) ;

open_client_socket (&client) ; open_server_socket (&server, 10024) ;

47

Initialization

connect_client_to_server
 (&client, “10.0.0.2”, 10024) ;

wait_for_client
 (&server, &client) ;

send_message_to_socket
 (&client, REQUEST) ;

receive_message_from_soacket
 (&client, REQUEST) ;

send_message_to_socket
 (&client, REPLY) ;

receive_message_from_soacket
 (&client, REPLY) ;

socket_close (&client) ; socket_close (&client) ;
socket_close (&server) ;

E.NetworkMessage
The data type NetworkMessage_t, available including the header file network_message.h, stores the
message that can be sent over the network sockets to exchange information between two processes.
The structure of the messages that can be built with 3D-ICE is the following:

Length Type … Data …

The header of the message contains two words: Length and Type. Length indicates the total length of
the message (header plus payload), expressed as number of words that are going to be sent or received
through the socket, while Type indicates the type of data that the message contains. The messages can
have any length and the functions available in network_message.h guarantee that the memory to store
the messages is handled transparently: the user must not worry about the content of the field length
because its value is computed or updated internally whenever new data is added in the payload. The
types of network messages supported so far in 3D-ICE are defined through the enumeration
MessageType_t defined in the header file types.h. The user is free to add new message types and to
define the corresponding payload as well as the operations that either the client or the server must do
whenever they send or receive a message of such type.

The sequence of functions that must be used to create and send a message is the following:

 network_message_init (NetworkMessage_t *)
 build_message_head (NetworkMessage_t *, MessageType_t)
 insert_message_word (NetworkMessage_t *, void *)
 send_message_to_socket (Socket_t *, NetworkMessage_t *)
 network_message_destroy (NetworkMessage_t *)

48

REQUEST

REPLY

Open & Connect

Communication

Close

Header Payload

The function called to insert a word of data in the payload must be called as many times as the number
of words that must be present in the message according to its type. When the message is built, the
payload behaves as a stack, meaning that every time that a word is inserted with
insert_message_word, that word will be put at the right of the actual payload and the length of the
message will automatically be increased by one unity. Therefore, the order of the calls to
insert_message_wordmust reflect the order of the data in the payload. Because of this mechanism,
the function network_message_destroy must be called before creating a new message using the same
variable to delete the header and the payload and reset the state of the message.

On the other side, when a message must be received from a socket, the sequence of functions to be
used is the following:

 network_message_init (NetworkMessage_t *)
 receive_message_from_socket (Socket_t *, NetworkMessage_t *)
 extract_message_word (NetworkMessage_t *, void *, int)
 network_message_destroy (NetworkMessage_t *)

Once the message has been received, the function extract_message_word is meant to extract a word
from the payload using an index. It means that once the message is received, the words in the payload
can be accessed and read in any order. Again, the number of words in the payload depends on the type
of the message that is received (the type can be accesses using the corresponding field in the data
structure) and the message must be reset with free_network_message before using the same variable
to receive a new message.

More details about the usage of the network interface in 3D-ICE can be found in the sources itself or in
their documentation. As main reference, the user can follow the two examplesavailable in the bin
folder: 3D-ICE-Client.c and 3D-ICE-Server.c. These two files shows how to establish the
communication between a client and a server and how a client can build messages to send to the server
a sequence of power traces and get back from the server some information about the thermal state of
the simulation.

F. Debugging of ThermalSimulation
For the purpose of debugging, several pre-processing options can be enabled to directlycheck the values
computed during the construction of thermal data (thermal grid/circuit, system matrices, sources etc)
before the simulation even starts. These options can be activated uncommenting the correspondingline
in the file 3d-ice/sources/Makefile and running the makecommand again (runthe make clean
command before building). As a consequence, messages will beredirected to stderr.

The debug options that are available are:

 PRINT_SYSTEM_MATRIX prints the content of the system matrix while it is filled. For every
columnin the system matrix (G+C/h, see [1] for more details),it prints the cell ID of the
corresponding cell and the list of the nonzero coefficients indicating representing its neighbors.
For every neighbor, it also prints the cell ID.

49

 PRINT_SYSTEM_VECTORprints the content of the system vector (the Thermal state) at every time
step.

50

G. Binding to SystemC/TLM2.0 Applications
SystemC is a set of C++ classes which can be used to develop event-driven simulations. Transaction-level
modeling (TLM) is an approach to modeling digital systems focused in the abstraction of communication
between the primary functional blocks within a system. Combined they represent a powerful alternative
to create fast and still accurate virtual platforms typically used for performance analysis and architecture
exploration.

The 3D-ICE thermal library provides a SystemC/TLM2.0 interface that allows it to be easily integrated
into virtual platforms based on those technologies.

Users interested in this feature need to install the SystemC 2.3.1 library (which includes TLM2.0) on their
systems. The sources can be downloaded from . Installation instructions can be found in the installation
notes file contained in the release package. After fulfilling this installation prerequisite, the correct path
to the SystemC library and the appropriate architecture (linux or linux64) must properly set in
makefile.def. Then a new version version of the 3D-ICE thermal library with enable support to
SystemC/TLM2.0 must be compiled.

$ make clean

$ make SYSTEMC_WRAPPER=y

The new thermal library can be linked to the user program and the IceWrapper class implemented in
include/IceWrapper.h provides the interface between the thermal simulator and the user application.

In addition, an extra executable 3D-ICE-SystemC-Client example will be created inside the 3d-ice/bin/
folder. The source code for this program can be found in the same folder and it serves as a basic
example on how to integrate the 3D-ICE thermal library to your SystemC/TLM2.0 based application. To
test the program, go to the bin folder execute 3D-ICE-Server and wait until it is ready to receive requests
then execute the 3D-ICE-SystemC-Client as presented below:

$./3D-ICE-Server stack.stk 12345

$./3D-ICE-SystemC-Client 127.0.0.1 12345

51

12. References
[1] A Sridhar, A Vincenzi, M Ruggiero, T Brunschwiler, D Atienza, "3D-ICE: Fast compact transient

thermal modeling for 3D-ICs with inter-tier liquid cooling", Proceedings of the 2010 International
Conference on Computer-Aided Design (ICCAD 2010), San Jose, CA, USA, November 7-11 2010.

[2] A Sridhar, A Vincenzi, M Ruggiero, T Brunschwiler, D Atienza, "Compact transient thermal model
for 3D ICs with liquid cooling via enhanced heat transfer cavity geometries", Proceedings of the
16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC'10) ,
Barcelona, Spain, 6-8 October, 2010.

[3] T Brunschwiler, S Paredes, U Drechsler, B Michel, W Cesar, Y Leblebici, B Wunderle, H Reichl,
“Heat-removal performance scaling ofinterlayer cooled chip stacks”, Proceedings of the 2010
IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic
Systems (ITHERM ’10), pp. 1-12, June2010.

[4] T A Davis and E P Natarajan, “Algorithm 8xx: KLU, adirect sparse solver for circuit simulation
problems”, ACM Transactions on Mathematical Software, vol.5, no.1, pp.1–14, 2010.

[5] Doxygen, URL:https://www.doxygen.nl/index.html.
[6] D. Atienza, P. G. Della Valle, G. Paci, F. Poletti and L. Benini, “HW-SW Emulation Framework for

Temperature-Aware Design in MPSoCs”, ACM Transactions on Design Automation for Embedded
Systems (TODAES), vol. 12, no. 3, August, pp. 1 – 26, 2007.

[7] Lee, S., Song, S., Au, V., Moran, K., “Constriction/Spreading Resistance Model for Electronics
Packaging”, ASME/JSME Thermal Engineering Conf., Vol.4, 1995, pp.199-206.

[8] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans Vangheluwe. 2018.
Co-Simulation: A Survey. ACM Comput. Surv. 51, 3, Article 49 (July 2018), 33 pages.
DOI:https://doi.org/10.1145/3179993

[9] F. E. Cellier and E. Kofman, Continuous system simulation. Springer Science & Business Media,
2006.

[10] F. Terraneo, A. Leva, W. Fornaciari, M. Zapater, D. Atienza, “3D-ICE 3.0: efficient nonlinear
MPSoC thermal simulation with pluggable heat sink models”, Transactions on Computer-Aided
Design of Integrated Circuits and Systems Volume 40 pp. 1-14, 2021-04-19

52

	1. License and Copyright
	2. What is new in 3.x?
	3. What is new in 2.x?
	4. Who needs 3D-ICE?
	5. Before you begin
	A. Compile SuperLU
	B. Compile 3D-ICE
	C. Pluggable heat sink and co-simulation interface
	D. Testing installation

	6. Overview of 3D-ICE
	A. Principle of thermal simulation
	i. Microchannel 4-resistor model
	ii. Microchannel 2-resistor model
	iii. Pinfins in-line
	iv. Pinfins staggered

	B. Inputs to 3D-ICE
	C. Convention and Terminology

	7. Creating a 3D-ICE project
	A. Stack Description File
	i. Materials
	ii. Layers
	iii. Dies
	iv. Heat Sink
	Pluggable heat sinks

	v. Liquid-cooled cavity
	Microchannel 4-resistor model
	Microchannel 2-resistor model
	Pinfins

	vi. Dimensions
	Problem Complexity

	vii. Stack
	viii. Analysis options
	ix. Output Instructions

	Examples
	B. Floorplan File
	L2_Cache_0 :
	Time Slots

	8. Co-simulation and plugin interface
	Writing a heat sink in Modelica
	Editing a Modelica Heatsink using the OMEdit editor
	Using a heat sink written in Modelica
	Writing a heat sink in C++ or Python
	The HS483 heat sink model
	The cuplex_kryos_21606 heat sink model

	9. Network interface for remote simulations
	10. Running 3D-ICE
	Numerical stability when using the co-simulation interface

	11. Usage of the 3D-ICE as Software Thermal Library
	A. StackDescription_t, Analysis_t and Output_t
	B. ThermalData_t
	C. Emulation and thermal output
	D. Socket
	E. NetworkMessage
	F. Debugging of ThermalSimulation
	G. Binding to SystemC/TLM2.0 Applications

	12. References

